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Abstract—Deep learning is increasingly being used for many
tasks in wireless communications, such as modulation classifi-
cation. However, it has been shown to be vulnerable to adver-
sarial attacks, which introduce specially crafted imperceptible
perturbations, inducing models to make mistakes. This letter
proposes an input-agnostic adversarial attack technique that is
based on generative adversarial networks (GANs) and multi-task
loss. Our results show that our technique reduces the accuracy
of a modulation classifier more than a jamming attack and
other adversarial attack techniques. Furthermore, it generates
adversarial samples at least 335 times faster than the other
techniques evaluated, which raises serious concerns about using
deep learning-based modulation classifiers.

Index Terms—Adversarial Attacks, Wireless Security, Mod-
ulation Classification, Deep Learning, Generative Adversarial
Networks.

I. INTRODUCTION

Due to its success in the most diverse fields, deep learning
has been increasingly investigated and adopted in wireless
communications. It has been recently used for channel encod-
ing and decoding [1], resource allocation [2], [3], and auto-
matic modulation classification (AMC) [4], [5]. More specif-
ically, deep learning-based modulation classifiers have been
replacing traditional AMC techniques because they achieve
better classification performance without requiring manual
feature engineering [6]–[8].

However, deep learning models have been shown to be
vulnerable to adversarial attacks, which puts into question the
security and reliability of wireless communication systems
that rely on such models [6], [9]–[12]. Adversarial attacks
introduce specially crafted imperceptible perturbations that
cause wrong classification results. Thus, they can force a
deep learning-based modulation classifier on a receiver to
misidentify the modulation mode used so that a signal is not
correctly demodulated and the communication compromised.

Adversarial attacks can be classified as white or black-
box attacks, depending on the knowledge they require from
their target models. White-box attacks require a complete
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knowledge of the classifier’s model, such as training data,
architecture, learning algorithms, and hyper-parameters [13].
Black-box attacks, on the other hand, assume a more feasible
scenario in which the attacker has access to only the model’s
output [13]. Furthermore, the authors of [14] define three
more restrictive and realistic black-box threat models: query-
limited, partial-information, and decision-based. The query-
limited scenario considers that attackers have access to only a
limited number of the model’s outputs. The partial-information
scenario considers that attackers have access to only the
probabilities of some of the model’s classes. Finally, the
decision-based scenario considers that attackers have access
to only the model’s decision, i.e., the class to which it assigns
a given data sample.

Although existing adversarial attacks pose risks to the use
of deep learning in wireless communications, they require a
complete knowledge about the target model [7], [15] or take
too long to craft adversarial perturbations [11], [16], [17].
In this letter, we propose a novel input-agnostic decision-
based adversarial attack technique that reduces the accuracy
of modulation classifiers more and crafts perturbations sig-
nificantly faster than existing techniques. Our technique is
necessary for assessing the risks of using deep learning-
based AMC in the more realistic scenario of decision-based
black-box attacks. Moreover, it can significantly contribute
to developing classifiers that are robust against adversarial
attacks. The main contributions of our work are as follows:
First, we combine generative adversarial networks (GANs)
[18] and multi-task loss [19] to generate adversarial samples,
by simultaneously optimizing their ability to cause wrong
classifications and not being perceived. Second, we reduce the
accuracy of modulation classifiers more and craft adversarial
samples in a shorter time than existing techniques while
following the decision-based black-box scenario. Third, we
propose an input-agnostic adversarial attack technique that
does not depend on the original samples to craft perturbations.
It allows adversarial perturbations to be prepared in advance,
further reducing the time for executing the adversarial attack.
Finally, our work verifies that modulation classifiers are at
an increased risk and urgently need to be enhanced against
adversarial attacks.

II. RELATED WORKS

Although adversarial attacks were initially explored in com-
puter vision applications, they have recently been investigated
for wireless communication applications, such as AMC. The
authors of [7] and [15] evaluate the robustness of a modulation
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classifier against four white-box adversarial attack techniques:
fast gradient sign method (FGSM), projected gradient descent
(PGD), basic iterative method (BIM), and momentum iterative
method (MIM). The works show that the classifier’s accuracy
is significantly compromised. However, they do not measure
the extent of the perturbation or the time it takes to craft
adversarial samples. The work in [10] extends the white-
box techniques FGSM, momentum iterative fast gradient sign
method (MI-FGSM), and PGD to a power allocation applica-
tion. It shows that adversarial attacks also pose a significant
risk to regression-based applications, such as power allocation.

Several other works focus on black-box attacks, as they are
more realistic for not requiring complete knowledge about the
model [13]. The authors of [16] propose a boundary attack
technique that requires access to only the classifier’s decision.
It relies on a probabilistic distribution to iteratively craft
adversarial samples and reduce their distance to the original
sample. Although it compromises the accuracy of classifiers, it
takes more than a minute to craft a single adversarial sample.
The authors of [17] propose an iterative algorithm to produce
universal perturbations and show that state-of-the-art image
classification neural networks are highly vulnerable. However,
it takes more than 20 seconds to craft each adversarial sample.
The authors of [11] propose an algorithm to craft adversarial
attacks that is shown to require significantly less power than
conventional jamming attacks to compromise the performance
of a modulation classifier. Although the algorithm reduces the
craft time of adversarial perturbations, it still requires hundreds
of milliseconds to craft each adversarial sample.

III. ADVERSARIAL ATTACKS FORMULATION

Although deep learning models may be trained with a
large amount of data, it is impractical to train them to cover
all possible input feature vectors. As a result, the decision
boundary found by a trained model may differ from the real
one. The discrepancy creates room for a trained model to make
mistakes [7]. Adversarial attacks craft perturbations to corrupt
data samples so that they fall within that discrepancy area
and are misclassified by a trained model. However, this is not
a trivial task as the perturbations must be large enough to
cause misclassifications but small enough to not be perceived.
Therefore, given a sample x, the goal of an adversarial attacker
is to find a perturbation δ and construct an adversarial sample
xadv = x+ δ while satisfying

min ||xadv − x|| < ρ (1)

and
f(xadv) ̸= f(x), (2)

where || · || represents a chosen distance metric, ρ is the
maximum imperceptible perturbation according to that metric,
and f is the trained classifier target of the attack.

IV. PROPOSED ADVERSARIAL ATTACK TECHNIQUE

In our work, we consider that our proposed adversarial
attack technique is deployed as a malicious software on
software-defined wireless receivers, an essential piece of mod-
ern wireless communication and 5/6G. Although injecting such

malicious software is out of the scope of our work, it may be
done by infecting software-defined radios with malware [20].
The malware can send samples to the receiver’s modulation
classifier and has access to its decisions. It intercepts incoming
signals, craft perturbations δ, add the perturbations to original
samples to form adversarial samples xadv = x+δ, and forward
adversarial samples xadv to the modulation classifier. Thus,
the receiver’s modulation classifier f identifies the modulation
mode of x as f(xadv). Since f(xadv) ̸= f(x), the signal is
not correctly demodulated, and the communication is compro-
mised. Figure 1 shows our attack model. The analog-to-digital
converter (ADC) forwards clean samples to the modulation
classifier, but they are tampered by the adversarial attacker.
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Fig. 1. Our attack model considers the adversarial attacker as malicious
software on the wireless receiver

We propose a novel multi-objective adversarial attack tech-
nique by combining a GAN and multi-task loss. GANs
estimate generative models by simultaneously training two
competing neural networks: generator and discriminator [21].
The generator learns the probabilistic distribution of training
data, and the discriminator learns how to distinguish between
real data and data produced by the generator. We train a
GAN so that its generator produces adversarial perturbations
δ = G(z) from random latent vectors z and its discriminator
learns to distinguish between clean samples x and adversarial
samples xadv = x + G(z). We adopt the Wasserstein GAN
(WGAN), which minimizes the Wasserstein distance between
two probability distributions. It is easier to train than the
original GAN, and does not suffer from the gradient vanishing
problem [22], [23]. Although other GAN formulations, such as
WGAN Gradient Penalty (WGAN-GP) [24], try to overcome
WGAN’s difficulty in enforcing the Lipschitz constant, the
work in [25] shows that WGAN-GP does not necessarily
outperform WGAN. In future work, we will evaluate our
technique with other GAN formulations, such as WGAN-GP.

The WGAN discriminator estimates the Wasserstein dis-
tance by maximizing the difference between average critic
score on real and fake samples. Besides, since we want
the generator to produce perturbations rather than adversarial
samples, fake samples are designated as x + G(z) instead
of G(z). Thus, we minimize the discriminator loss given by
LD = D(x+G(z))−D(x). On the other hand, the WGAN
generator has the opposite goal of maximizing the average
critic score on fake samples. Hence, we minimize the generator
loss given by LG = −D(x+G(z)). However, such a LG only
accounts for minimizing the difference between x and xadv ,
which corresponds to the condition of equation (1). It does
not consider the condition of equation (2), which is to ensure
that x and xadv are assigned to different classes.

To ensure that our GAN considers the conditions of both
equation (1) and equation (2), we modify the generator’s loss
to simultaneously optimize two objective functions that are
given by LG1 and LG2. LG1 represents the task of minimizing
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the difference between x and xadv and is given by the original
generator loss, hence LG1 = −D(x+G(z)). LG2 represents
the task of ensuring that x and xadv are assigned to different
classes. It is given by the cross entropy loss between the
class f assigns to xadv and the label of x, hence LG2 =
CE(f(x+G(z)), y), where CE stands for the cross entropy
loss largely adopted in classification problems and y is the
label of x. During training, our technique leverages its access
to the classifier’s decisions to simultaneously optimize its
ability to cause wrong classifications and not being perceived.

While most works that simultaneously learn multiple tasks
manually tune a weighted sum of losses, we leverage the multi-
task loss proposed in [19]. That work uses aleatoric uncer-
tainty, which is a quantity that stays constant for all input data
and varies between different tasks, to simultaneously optimize
any two losses by optimally balancing their contributions as

L =
1

2σ2
1

L1 +
1

2σ2
2

L2 + log σ1σ2, (3)

where L1 and L2 are any two losses, and σ1 and σ2 are
learnable weights automatically tuned when training a neural
network. Thus, while we train the GAN discriminator with

LD = D(x+G(z))−D(x), (4)

we combine LG1 and LG2 with equation (3), where L1 = LG1

and L2 = LG2, so that our generator loss becomes

LG =
−D(x+G(z))

2σ2
1

+
CE(f(x+G(z)), y)

2σ2
2

+ log σ1σ2.

(5)
Figure 2 shows the training model, and Algorithm 1 shows the
execution steps of our proposed adversarial attack technique.
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Fig. 2. Our proposed training model

Algorithm 1: Proposed Adversarial Attack Technique
1: Train a GAN according to equations (4) and (5)
2: for Each incoming sample x do
3: Compute G(z)
4: Construct the adversarial sample xadv = x+G(z)
5: end for

V. METHODOLOGY AND EXPERIMENTAL EVALUATION

We use the RADIOML 2016.10A dataset and VT-CNN2
modulation classifier designed by DeepSiG and publicly avail-
able in [4], [26] to evaluate our proposed adversarial attack
technique. The dataset is constructed by modulating and
exposing signals to an additive white Gaussian noise (AWGN)
channel that includes sampling rate offset, random process
of center frequency offset, multipath, and fading effects, as

described in [4], [26]. Since our technique crafts adversarial
samples on receivers, it is not subject to channel effects. In
future work, we will consider them to enhance our proposed
technique so that it sends adversarial samples over the air.

After modulation and channel modeling, the signals are
normalized and packaged into 220,000 samples of in-phase
and quadrature components with length 128, each associated
with a modulation scheme and a signal-to-noise ratio (SNR).
SNR is a measure of a signal’s strength. It is the ratio between
the power of the signal and of the background noise, i.e.,
SNR[dB] = 10 log(

Psignal

Pnoise
), where P is the signal power.

Eleven different modulation schemes (eight digital and three
analog) are possible: 8PSK, BPSK, QPSK, QAM16, QAM64,
CPFSK, GFSK, PAM4, WBFM, AM-DSB, and AM-SSB.
Twenty different SNRs, ranging from -20 dB to 18 dB in
steps of 2 dB, are possible. Twenty percent of the samples are
reserved as a testing set to measure the VT-CNN2 modulation
classifier’s accuracy on clean and adversarial samples.

The VT-CNN2 modulation classifier relies on deep con-
volutional neural networks and classifies samples among the
eleven modulation schemes in the dataset. Figure 3 shows VT-
CNN2’s architecture. Although the softmax layer gives the
probability of membership for each class, we consider the clas-
sifier’s output to be only its final decision, i.e., the modulation
class that has the highest probability. Thus, f(x+G(z)) is the
predicted label of one of the modulation schemes considered.
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Fig. 3. VT-CNN2 neural network architecture

Finally, Figures 4 and 5 show the GAN’s generator and
discriminator architectures. They were optimized using the
Optuna framework [27], which automatically searches for the
optimal hyper-parameters, and the early stopping mechanism
to avoid overfitting. Table I shows the hyper-parameter values
used in the GAN after tuning. All experiments were conducted
using an AMD Ryzen Threadripper 1920X 12-core 2.2GHz
processor with 64GB of RAM and an NVIDIA GeForce RTX
2080 in a Pytorch environment.
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Fig. 4. GAN generator architecture

VI. RESULTS AND DISCUSSION

As previously mentioned, the goal of adversarial attacks
is to introduce imperceptible perturbations capable of re-
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Fig. 5. GAN discriminator architecture

TABLE I
HYPER-PARAMETERS VALUES

Hyper-Parameter Value
Optimizer Adam

Generator Learning Rate 0.00049
Discriminator Learning Rate 0.00055

Batch Size 128
Latent Dimension 100

Dropout Rate 0.10

ducing the accuracy of a modulation classifier. Therefore,
we evaluated our proposed attack technique by measuring
the VT-CNN2’s accuracy on clean and adversarial samples,
and the perturbation-to-noise ratio (PNR). PNR measures the
ratio between the perturbation and noise power levels so
that PNR[dB] = 10 log(

Pperturbation

Pnoise
), where P is the signal

power. The larger the PNR, the larger the perturbation is
in comparison to the noise, becoming more distinguishable
and more likely to be detected. Perturbations are considered
imperceptible when they are in the same order as or below the
noise level, i.e., PNR < 0 dB.

Figure 6 shows the VT-CNN2’s accuracy versus PNR for
SNRs of 10, 0, and -10 dB. Without attacks, the classifier
achieves different accuracy depending on the SNR because
larger noises make it harder for the classifier to achieve correct
results. Under our proposed adversarial attack, the classifier’s
accuracy is significantly reduced in all cases. At 0 dB PNR, our
technique reduces the accuracy by 37% for 10 dB SNR, 56%
for 0 dB SNR, and 7% for -10 dB SNR. Our technique reduces
the accuracy more for 0 dB than for 10 dB SNR because, for
signals with the same strength, larger SNRs mean lower noise
levels so that it is more challenging to produce imperceptible
perturbations that still significantly compromise the accuracy.
However, although the noise at -10 dB SNR is the highest,
allowing our technique to produce larger perturbations, the
accuracy reduction is not as significant as at 0 dB SNR
or 10 dB SNR. If f(x + G(z)) in equation (5) gives too
many wrong results regardless of the adversarial perturbation
G(z), it is harder for our technique to find what perturbation
would reduce the classifier’s accuracy the most. Thus, the
fact that our technique relies on the classifier’s decisions
to train the GAN diminishes its capacity to produce wrong
classifications when the classifier’s accuracy is low. Since the
classifier’s accuracy is around only 22% at -10 dB SNR, the
adversarial perturbations that our proposed technique crafts are
less effective. Nevertheless, our proposed adversarial attack
technique still significantly reduces the classifier’s accuracy.

We further examine the influence of perturbations on signal
waveforms. We verify that the signal waveform after per-
turbation (adversarial sample) is consistent with the original

Fig. 6. Modulation classifier’s accuracy versus PNR with and without our
proposed adversarial attack technique

waveform (clean sample), i.e., amplitude, frequency, and phase
do not significantly change. Thus, while our technique’s per-
turbations mislead the classifier, they are not easily recognized
by human eyes. Figure 7 illustrates the time domain waveform
of an 8PSK signal before and after the perturbation is intro-
duced. Similar results were achieved for the other modulation
schemes considered, such that clean and adversarial sam-
ples always have very similar waveforms without significant
changes in their amplitude, frequency, and phase.

Fig. 7. Waveform comparison of a 8PSK signal with SNR=10 dB before
(clean sample) and after (adversarial sample) our proposed adversarial attack

Moreover, we compare our results to those of a jamming
attack, which adds Gaussian noise to signals, and two other
adversarial attack techniques: those proposed in [17] and [11].
Figure 8 shows the VT-CNN2’s accuracy on clean samples and
adversarial samples produced by the jamming attack and the
three adversarial attack techniques evaluated for SNR=10 dB.
Perturbations introduced by adversarial attacks are specially
crafted to reduce the classifier’s accuracy the most while not
being perceived. Thus, our technique and the techniques from
[17] and [11] are significantly more harmful than attacks
that introduce random noises, such as the jamming attack.
Moreover, our proposed attack technique is the one that
reduces the accuracy the most.

Finally, we evaluate how long it takes for each technique to
craft adversarial samples. Table II shows the mean execution
time for crafting adversarial samples. Our proposed technique
achieves significantly shorter times than the other two tech-
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Fig. 8. Modulation classifier’s accuracy versus PNR without and subject to
different adversarial attack techniques

niques by crafting adversarial samples in less than 0.7 ms.
Thus, it is more than 335 times faster than the second-fastest
attack technique. Techniques that take too long to craft pertur-
bations might be too late so that the signals they aim to perturb
have already been correctly demodulated. Thus, such a time
reduction is essential to compromise fast modulation classifiers
and is a great advantage of our technique. Moreover, since
our technique is input-agnostic, it can prepare perturbations
in advance and just add them to incoming signals. Therefore,
our proposed technique represents a severe risk to using deep
learning-based modulation classifiers.

TABLE II
MEAN EXECUTION TIME FOR CRAFTING ADVERSARIAL SAMPLES

Adversarial Attack Technique Mean Execution
Time per Sample

Technique from [17] 20189 ms
Technique from [11] 234 ms

Our Proposed Technique 0.6980 ms

VII. CONCLUSION

In this letter, we verified that deep learning is exposed
to security risks that must be considered despite its advan-
tages. Our results showed that it is possible to quickly craft
small imperceptible perturbations that completely compromise
modulation classifiers’ accuracy and hence wireless receivers’
performance. Therefore, it is urgently necessary to enhance
deep learning-based modulation classifiers’ robustness against
adversarial attacks. As future work, we will evaluate the use
of other GAN formulations, such as WGAN-GP, modify our
attack model to consider adversarial attacks transmitted over
the air, and investigate adversarial attack defense strategies.
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